158 research outputs found

    Detuned Twin-Signal-Recycling for ultrahigh-precision interferometers

    Get PDF
    We propose a new interferometer technique for high-precision phase measurements such as those in gravitational wave detection. The technique utilizes a pair of optically coupled resonators that provide identical resonance conditions for the upper as well the lower phase modulation signal sidebands. This symmetry significantly reduces the noise spectral density in a wide frequency band compared with single-sideband recycling topologies of current and planned gravitational wave detectors. Furthermore, the application of squeezed states of light becomes less demanding

    Analysis of a four-mirror cavity enhanced Michelson interferometer

    Full text link
    We investigate the shot noise limited sensitivity of a four-mirror cavity enhanced Michelson interferometer. The intention of this interferometer topology is the reduction of thermal lensing and the impact of the interferometers contrast although transmissive optics are used with high circulating powers. The analytical expressions describing the light fields and the frequency response are derived. Although the parameter space has 11 dimensions, a detailed analysis of the resonance feature gives boundary conditions allowing systematic parameter studies

    Strong reduction of laser power noise by means of a Kerr nonlinear cavity

    No full text
    We demonstrated the power noise reduction of a continuous-wave laser field by means of an effective third-order Kerr nonlinear cavity. In contrast to conventional noise reduction schemes relying on linear cavities, a strong noise suppression at Fourier frequencies below the linewidth of the nonlinear cavity was possible. The laser light was reflected off a Kerr nonlinear cavity that had a half width half maximum linewidth of 4.5 MHz. The cavity was operated slightly off-resonance at approximately half of the maximum power buildup, close to its so-called critical state; a power noise reduction of up to 32 dB at Fourier frequencies below 1 MHz was observed after reflection. The effective third-order nonlinearity was a so-called cascaded second-order nonlinearity of MgO:LiNbO3. The laser had a power of 0.75 W at the wavelength of 1064 nm

    Manipulation and removal of defects in spontaneous optical patterns

    Full text link
    Defects play an important role in a number of fields dealing with ordered structures. They are often described in terms of their topology, mutual interaction and their statistical characteristics. We demonstrate theoretically and experimentally the possibility of an active manipulation and removal of defects. We focus on the spontaneous formation of two-dimensional spatial structures in a nonlinear optical system, a liquid crystal light valve under single optical feedback. With increasing distance from threshold, the spontaneously formed hexagonal pattern becomes disordered and contains several defects. A scheme based on Fourier filtering allows us to remove defects and to restore spatial order. Starting without control, the controlled area is progressively expanded, such that defects are swept out of the active area.Comment: 4 pages, 4 figure

    The upgrade of GEO600

    Get PDF
    The German / British gravitational wave detector GEO 600 is in the process of being upgraded. The upgrading process of GEO 600, called GEO-HF, will concentrate on the improvement of the sensitivity for high frequency signals and the demonstration of advanced technologies. In the years 2009 to 2011 the detector will undergo a series of upgrade steps, which are described in this paper.Comment: 9 pages, Amaldi 8 conference contributio

    Sensitivity Studies for Third-Generation Gravitational Wave Observatories

    Full text link
    Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture

    The next detectors for gravitational wave astronomy

    Full text link
    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options

    Scientific Potential of Einstein Telescope

    Full text link
    Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
    • …
    corecore